Type of course: | Compulsory |
Language of instruction: | English |
Erasmus Language of instruction: | English |
Name of lecturer: | Ildiko Camelia Tulbure |
Seminar tutor: | Ildiko Camelia Tulbure |
Form of education | Full-time |
Form of instruction: | Class / Seminary |
Number of teaching hours per semester: | 56 |
Number of teaching hours per week: | 4 |
Semester: | Autumn |
Form of receiving a credit for a course: | Grade |
Number of ECTS credits allocated | 5 |
• Delivering theoretical and methodological basic notions related to Fluid Mechanics;
• Students customisation to the specific terminology and expressions of Fluid Mechanics;
• Presenting general notions related to laminar and turbulent flows;
• Explaining modelling methods of dynamic fluid systems.
• Understanding basic notions related to Fluid Mechanics, which will be used for describing specific phenomena regarding environmental pollution and environmental protection
Physics, Mathematics, Mechanics
• Introduction, goals and objectives of this course; • Physical properties of fluids; • Fluid Statics; • Fluid kinematics; • Ideal fluid dynamics; • Principle of linear momentum and of angular momentum; • Real fluid dynamics; • Basics of urbulent flows; • Pipe flows without pressure losses; • Pipe flows with pressure losses; • Mass and heat transfer in fluids; • Characteristic numbers used for analyzing fluid-dynamic processes • Fluid-dynamic models used for describing environmental pollution phenomena • Conclusions related to the relevance of fluid mechanics in environmental engineering
Giving lectures, presenting real case studies, explaining industrial processes based on fluids, conversation, exemplification.
usage of basic fluid mechanics notions in solving environmental pollution problems; gaining basic notions for further analyzing and assessing environmental pollution and protection field; good expertise retrieval and systematic knowledge on the basis of deeper insights within the study of environmental pollution and protection subjects
Oral examination – 60%; continuous assessment by preparing reports and delivering results of practical work in the laboratory – 30%; implication in solving problems during seminars – 10 %
• Tulbure, I.: Mecanica fluidelor. Didactica, University ”1 Decembrie 1918” Alba Iulia, 2014
• Dan Gh. Ionescu: Introducere în mecanica fluidelor. Tehnică Publishing House. Bucharest, 2004.
• Tulbure, I.: Mecanica fluidelor – Lecture. Institute for Applied Mechanics of the Clausthal Universito of Technology, Germany, 2003
• Jischa, M., F.: Konvektiver Impuls-, Wärme- und Stoffaustausch. Vieweg. Braunschweig, Germany, 1982.
• Irimie, I., I.: Mecanica fluidelor şi maşini hidraulice. Curs. Litografia Universităţii din Petroşani, 2000.